A modular gradient-sensing network for chemotaxis in Escherichia coli revealed by responses to time-varying stimuli
نویسندگان
چکیده
The Escherichia coli chemotaxis-signaling pathway computes time derivatives of chemoeffector concentrations. This network features modules for signal reception/amplification and robust adaptation, with sensing of chemoeffector gradients determined by the way in which these modules are coupled in vivo. We characterized these modules and their coupling by using fluorescence resonance energy transfer to measure intracellular responses to time-varying stimuli. Receptor sensitivity was characterized by step stimuli, the gradient sensitivity by exponential ramp stimuli, and the frequency response by exponential sine-wave stimuli. Analysis of these data revealed the structure of the feedback transfer function linking the amplification and adaptation modules. Feedback near steady state was found to be weak, consistent with strong fluctuations and slow recovery from small perturbations. Gradient sensitivity and frequency response both depended strongly on temperature. We found that time derivatives can be computed by the chemotaxis system for input frequencies below 0.006 Hz at 22 degrees C and below 0.018 Hz at 32 degrees C. Our results show how dynamic input-output measurements, time honored in physiology, can serve as powerful tools in deciphering cell-signaling mechanisms.
منابع مشابه
Precision sensing by two opposing gradient sensors: how does Escherichia coli find its preferred pH level?
It is essential for bacteria to find optimal conditions for their growth and survival. The optimal levels of certain environmental factors (such as pH and temperature) often correspond to some intermediate points of the respective gradients. This requires the ability of bacteria to navigate from both directions toward the optimum location and is distinct from the conventional unidirectional che...
متن کاملQuantitative Modeling of Escherichia coli Chemotactic Motion in Environments Varying in Space and Time
Escherichia coli chemotactic motion in spatiotemporally varying environments is studied by using a computational model based on a coarse-grained description of the intracellular signaling pathway dynamics. We find that the cell's chemotaxis drift velocity v(d) is a constant in an exponential attractant concentration gradient [L] proportional, variantexp(Gx). v(d) depends linearly on the exponen...
متن کاملModeling the chemotactic response of Escherichia coli to time-varying stimuli.
In their natural environment, cells need to extract useful information from complex temporal signals that vary over a wide range of intensities and time scales. Here, we study how such signals are processed by Escherichia coli during chemotaxis by developing a general theoretical model based on receptor adaptation and receptor-receptor cooperativity. Measured responses to various monotonic, osc...
متن کاملSugar Influx Sensing by the Phosphotransferase System of Escherichia coli
The phosphotransferase system (PTS) plays a pivotal role in the uptake of multiple sugars in Escherichia coli and many other bacteria. In the cell, individual sugar-specific PTS branches are interconnected through a series of phosphotransfer reactions, thus creating a global network that not only phosphorylates incoming sugars but also regulates a number of cellular processes. Despite the appar...
متن کاملChemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli
Bacteria communicate by producing and sensing extracellular signal molecules called autoinducers. Such intercellular signalling, known as quorum sensing, allows bacteria to coordinate and synchronize behavioural responses at high cell densities. Autoinducer 2 (AI-2) is the only known quorum-sensing molecule produced by Escherichia coli but its physiological role remains elusive, although it is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2010